

Farmer-group	Paddy Grain yield (kg/ha)	Gross Revenue (US\$/ha)	Production Cost** (US\$/ha)	Net Revenue (US\$/ha)
Adugyama*	4334	1712	428	1284
Biemso – A*	4675	1847	350	1497
Biemso – B*	4736	1871	324	1547
Biemso – C*	4675	1847	349	1498
Traditional	900	355	150	205
**The production cos 2000-40009 One powertiller car Jurability. One power	nue will be mor t does not inclu /ha including develop 1-3 ha	re than 30 ⁹ ide sawah o machine ai a per seasoi ivate 10 ha	6 up, \$10,000 development, nd running co <u>n and 10ha pe</u> <u>sawah per se</u> :	which will bo ost. e <u>r 5 years of</u> ason & 5year

Table: Necessary Technologies and Socio∽economic conditions to be researched on Site Specific Sawah Development & Management by Farmers' Self-Propeleld Efforts Sawah approach: farmers' personal rice irrigation scheme with 0.5−10ha area

- (1) Site Selection and Sawah system design
- (2) Development skills and cost (\$/ha)
- (3) Farmers Group Quality
- (4) Agronomic Sawah system management
- (5) Land Tenure Arrangement for sustainable sawah development
- (6) Training

 Site Selection and Sawah system design (a) Water sources for site selection (`Dilter/sec. > 5months) Stream/River. Spring. Seepage, Flood, Rainfed (b) Topography and soil for site selection Potential area Slope and surface roughness Soil (c) Socio-economic for site selection Participating farmers Land tenure (d) Sawah system design Sawah layout and total potential area Mean sawah size(ha) Water intake, distribution and control Spring and sawah to sawah & diversion canal Stream/Seepage and sawah to sawah & diversion canal 	At first local farmers never know sawah technologies, they know site specific hydrological conditions which are the most important for site selection
Simple dyke& diversion canal Weir & Canal Fish pond or dam lake Pump Interceptal canal Contour bud system Flood control by drainage/dam Drought control by pond/waterharvest Soil movement(t/ha) Contour bund system Flood control by drainage/dam Drought control by drainage/dam Soil movement(t/ha)	On the job collaboration between farmers and Scientists, engineers, as well as extension office is essentially important

 (2) Development skills and cost (\$/ha) (a) Skils for development Skill for power tiller operations Plowing and Puddling Soil Moving Surface leveling & smoothing 	Action research and on the job training of site specific sawah development and management	
Skill for power tiller management (b) Cost (\$/ha) or (Cedi/ha) Power tiller for development Powertiller spare parts Fuel for development Buch eleving doctomains	(1) Cots of Power tiller for Sawah development: at least 10ha per one power tiller (\$5000/10ha)	
Bush clearing destamping Bunding and surface teatment Canal construction Dyke construction Additional hired labours Tools and materials Scientist and engineers cost Extension officer cost Farmers' training	(2) Cost of scientists, engineers, extension officers, and leading farmers (3) Target cost: 2000-4000/ha	

Rice mono cropping	(1) Immediate target
Rice and other 2nd season cropping	Paddy vield >4t/ha
Rice double cropping	Faulty yield >40/11a
Overall Water Control	(2) 24/h a is not successful
Water sources	(2) 3t/ha is not enough
Water distribution	to sustain sawah
Leveling & smoothing	development
Bunding	
Puddling	(3) > 5t/ha will
Weed control	accelerate Sawah
water consumption (ton/season)	development
water requirment(mm/day)	
Water quality	(4) Basic research on
Soil fertility	sustainable paddy
Fertilzation(N-P2O5-K2Okg/ha)	yield >8t/ha
Variety	is important

(3) Farmers Group Quality Leader and group collaboration No. of farmers Ethnic composition Skills and incentives Gender composition

(6) Training

Trainer Trainee International scientists National scientists Extention officers Leading farmers & farmers To train (1) Sawah farmers who can develop Sawah and manage Sawah based rice farming by themselves,

(2)Leading sawah farmer and farmers' group who can train another new sawah Farmer and farmers' groups

Distribution of lowlands and potential irrigated sawah in SSA (Hekstra, Andriesse, Windmeijer 1983 & 1993, Potential Sawah area estimate by Wakatsuki 2002)				
Classification	Area (million ha)	Area and potential sawah development(%)		
Coastal swamps	17	4-9	millon ha (25-50%)
Inland basins	108	1-5	million ha	(1-5%)
Flood plains	30	8-15	million ha(25-50%)
Inland valleys	85	9-20	million ha(10-25%)
Priority target is the inland valley because of easier water control				
Max 20million ha (Estimated sawah area came from the relative amount				
of water cycle in Monsoon Asia, which has 130 million ha of sawah)				

Road Map to Realize Africa Rice Green Revolution through Site Specific Sawah Technology by Million Farmers' Self-Support Efforts

- <u>1986-2003 : (10 sites, 10ha of sawah) : Achieved</u> Baisc research on Site Specific Sawah development by farmers' self support efforts at Bida, Nigeria and Kumasi, Ghana
- <u>2004-2008:</u> (50 sites, 100ha of sawah): <u>Achieved</u> Basic Action research on Site Specific Sawah development by farmers at Bida, Zaria, Akure, and Ilorin, Nigeria and Kumasi and his surroundings, Ghana
- 2009-2013: (250 sites, 1000ha of sawah): Immediate Target for Action Research for Dissemination of Sawah Technology by Kinki Univ/NCAM/FadamaIII, JIRCAS, SMART-IV and JICA-CARD; Large scale Action research on Site Specific Sawah development by farmers at Nigeria, Ghana, Togo, Benin & others
- <u>2014-2025: (5000 sites or more, 25,000ha of Sawah)</u>: Africa wide dissemination of Site Specific Sawah development by farmers selfsupport efforts
- 2025 and after: African wide spontaneous sawah expansion and the Realization of African Rice Green Revolution: Realization of African Rice Potential

Comparison between Biotechnology and Sawah based Ecotechnology, which must be integrated

- Water shortage: Bio-technology:Genes for deep rooting, C4-nature, and Osmotic regulation. <u>Eco-technology of Sawah based soil and</u> water management, bunding, leveling, puddling, surface smoothing with various irrigations, Aerobic rice, System rice intensification
- (2) Poor nutrition, acidity and alkalinity:Gene of Phosphate and micronutrient transporter. Eco-technology of Sawah based N fixation, increase P availability and micro- as well as macronutrient. Geological fertilization and watershed agroforestry(SATOYAMA systems), organic matter and fertilization. Bird feculent are rich in P.
- (3) Weed control:Gene of weed competition, rapid growth. Eco-technology of Sawah based weed management through water control, and tans-planting. Leveling quality and surface smoothing of sawah are important. Duck and rice farming.
- (4) Pest and disease control: Resistance genes. <u>Ecc-technology of Sawah</u> based silica and other nutrients supply to enhance immune mechanisms of rice. Mixed cropping.
- 5) Food quality: Vitamine rice gene. Eco-technology: Sawah based nutrition control. Fish, duck and rice in sawah systems

	Heavy mad Contracto	hine use	Power tiller (sometimes animal traction) use. armer based developme	
Environmental effect	High	Medium	Low	Medium
Sustainable development	Low	Low to Midium	High	Medium
Adoption of Tecnology	Long, Difficult	Short, relatively easy	Medium to short, needs intensive demonstration and On the Job Training (OJT) programme	Low technology transfer
Project ownership	Government	Goverment	Farmer	Farmer
Farmers participation	Low	Medium to High	High	High
Running cost including machinary	Medium to High (300-600\$/ha)	Medium to High (300-600\$/ha)	Medium (200-300\$/ha)	Low (10-20\$/ha)
Economic returns of rice and vegetable etc	1,000-2,000+ US\$ / ha	1,000-2,000+ US\$ / ha	1,000-2,000+ US\$ / ha	100-300 US\$ / ha
Development cost per hectare	20,000-30,000 US\$ / ha	20,000-30,000 US\$ / ha	2,000-4,000 US\$/ha	20-30 US\$ / ha
	Large Scale Development	Small Scale Development	Sawah eco-technology approach	Traditional System

Sahara A concept and <mark>Sawah (in I</mark> i	No proper English/French &local language in Sub Sahara Africa to describe eco-technological concept and term to improve farmers'rice fields Sawah (in Indonesian) or SUIDEN (in Japanese)			
Suiden (Japa	inese) = <mark>S</mark>	AWAH (Malay	y-Indonesian)	
	English	Indonesian	Chinese(漢字)	
Plant Biotechnology	Rice	Nasi	米,飯,稲	
	Paddy <	Padi	稲、籾	
Environment Ecotechnlogy	(Paddy)?	Sawah	水田	

